Cyclic Homology of Categories of Matrix Factorizations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cyclic Homology of Exact Categories

The cyclic homology of an exact category was defined by R. McCarthy [17] using the methods of F. Waldhausen [26]. McCarthy’s theory enjoys a number of desirable properties, the most basic being the extension property, i.e. the fact that when applied to the category of finitely generated projective modules over an algebra it specializes to the cyclic homology of the algebra. However, we show tha...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

Factorizations of Cyclic Words

Weinbaum [Proc.AMS, 109(3):615–619, 1990] showed that for each letter a in a primitive word w, there exists a conjugate w = uv of w such that both u and v are uniquely positioned in the cyclic word w such that u begins and ends with a and v neither begins nor ends with a. We give a generalization of this result using iterative methods.

متن کامل

Localization of Matrix Factorizations

Matrices with off-diagonal decay appear in a variety of fields in mathematics and in numerous applications, such as signal processing, statistics, communications engineering, condensed matter physics, and quantum chemistry. Numerical algorithms dealing with such matrices often take advantage (implicitly or explicitly) of the empirical observation that this off-diagonal decay property seems to b...

متن کامل

Riordan group approaches in matrix factorizations

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnw332